A lifting and recombination algorithm for rational factorization of sparse polynomials
نویسنده
چکیده
We propose a new lifting and recombination scheme for rational bivariate polynomial factorization that takes advantage of the Newton polytope geometry. We obtain a deterministic algorithm that can be seen as a sparse version of an algorithm of Lecerf, with now a polynomial complexity in the volume of the Newton polytope. We adopt a geometrical point of view, the main tool being derived from some algebraic osculation criterions in toric varieties.
منابع مشابه
Algebraic Osculation and Factorization of Sparse Polynomials
We prove a theorem on algebraic osculation and we apply our result to the Computer Algebra problem of polynomial factorization. We consider X a smooth completion of C and D an effective divisor with support ∂X = X \ C. Our main result gives explicit conditions equivalent to that a given Cartier divisor on the subscheme (|D|,OD) extends to X. These osculation criterions are expressed with residu...
متن کاملLifting and recombination techniques for absolute factorization
In the vein of recent algorithmic advances in polynomial factorization based on lifting and recombination techniques, we present new faster algorithms for computing the absolute factorization of a bivariate polynomial. The running time of our probabilistic algorithm is less than quadratic in the dense size of the polynomial to be factored.
متن کاملParallel Polynomial Operations on SMPs: an Overview
1 SMP-based parallel algorithms and implementations for polynomial factoring and GCD are overviewed. Topics include polynomial factoring modulo small primes, univariate and multivariate p-adic lifting, and reformulation of lift basis. Sparse polynomial GCD is also covered.
متن کاملSparse Hensel Lifting
A new algorithm is introduced which computes the multivariate leading coefficients of polynomial factors from their univariate images. This algorithm is incorporated into a sparse Hensel lifting scheme and only requires the factorization of a single univariate image. The algorithm also provides the content of the input polynomial in the main variable as a by-product. We show how we can take adv...
متن کاملFactoring bivariate polynomials using adjoints
We relate factorization of bivariate polynomials to singularities of projective plane curves. We prove that adjoint polynomials of a polynomial F ∈ k[x, y] with coefficients in a field k permit to recombinations of the factors of F (0, y) induced by both the absolute and rational factorizations of F , and so without using Hensel lifting. We show in such a way that a fast computation of adjoint ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Complexity
دوره 26 شماره
صفحات -
تاریخ انتشار 2010